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Abstract 

The Adler-Kostant-Symes (AKS) scheme gives a geometrical method of construction of different 
integrable systems. In this paper we construct an AKS hierarchy, and we show that these commuting 
flows are reductions of self-dual Yang-Mills hierarchy. 
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1. Introduction 

It is well known that a systematic procedure of obtaining the most finite-dimensional 
completely integrable systems is the Adler, Kostant and Symes (AKS) theorem [AvM,Sy] 
to apply some Lie algebra g equipped with an ad-invariant non-degenerate bilinear form. 
We assume that g, as a vector space g = k + 1, is presented as the linear sum of two 
subalgebras. This bilinear form induces an isomorphism g 21 g*. Hence with the help of 
bilinear form ( , ) we can identify k* - 1’ and 1’ - k’ where 

(k’, k) = (I’, 1) = 0. 

So k’ acquires a Poisson structure from that of Z*. The coadjoint action of L on k’ - l* is 
given by 

g 0 P = Ql(gPg-9 

for g E L and p E k’. Then the infinitesimal action is n(p) = rrkl[n, p] for n E 1. 
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The symplectic manifold here is some coadjoint L-orbit M c k’ 2 1%. We associate to 
it a Hamiltonian equation of suitable ad-invariant function f : g --+ R’ for all f 1 M. In our 
case g is a loop algebra. We mention that many important equations can be derived from 
this approach, e.g. Adler and van Moerbeke [AvM] obtained an Euler-Arnold equation and 
geodesic flow on ellipsoid, Ratiu [Ra] obtained C. Neumann equation and so on. In fact 
we have also obtained coupled KdV and non-linear SchrGdinger equation by applying this 
AKS theorem. Hence AKS proves to be a general systematic procedure of obtaining many 
known and relatively unknown completely integrable Hamiltonian system. 

In a recent paper Ablowitz et al. [ACT] have developed a hierarchy of self-dual Yang- 
Mills (SDYM) equations by introducing an operator. This approach to the SDYM hierarchy 
is based on the general concept of intertwining operators which was introduced by Schur. 
The concept of intertwining operator has been applied by Mikio Sato in his theory of KP 
system [SS]. These intertwiners transform “bare unperturbed” auxiliary linear systems into 
“perturbed” linear systems which have been treated as a formal power series in h-l. In 
fact Ablowitz et al. have shown that these intertwiners are the non-local functionals of the 
Yang-Mills potentials. As an application to two-dimensional systems, they have shown 
that upon appropriate reduction and suitable choice of gauge group this hierarchy produces 
all the well-known hierarchies of soliton equation in 1 + l-dimensions. Hence they call it 
universal integrable hierarchy. 

Ward and Mason et al. [Wa,MS] have demonstrated that how the most well-known or not 
so well-known integrable systems arise as the reductions of SDYM equation. Thus all such 
integrable equations fall under the twistor framework. Certainly these give us a clue that 
we can reformulate the theory of integrable systems in terms of symmetry reductions of the 
SDYM equations. By reduction we mean: (a) one can reduce the number of independent 
variables to fewer than four by factoring out by a subgroup of the Poincari group; and (b) 
one can reduce the number of dependent variables by imposing algebraic constraints on the 
connections. 

This article serves two purposes: firstly, this gives a picture of higher flows for AKS 
hierarchy and we show that these are commuting flows, and secondly, since these flows are 
the reductions of SDYM hierarchy, morally this article gives further support to the twistor 
programme. 

2. Adler-Kostant-Symes scheme 

We separate out this section into two parts. In the first part we shall discuss the AKS 
theorem of a group with a two-cocycle [CG,Gu,RS]. In the second part we shall discuss the 
higher flows of AKS scheme, and we shall show that all the higher flows are commuting. 

2. I. AKS theorem 

A two-form 0 on M is called weak-symplectic form if w is closed and the induced map 
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from TM to T* M is defined by 

if it is injective then (M, a) is called symplectic manifold. Let M c k’ z I* be the 
coadjoint L orbit. Then the weak-symplectic form is the Kostant-Kirillov two-form on M 
defined by 

ar(X. Y) = (T, I$‘, ~1) 

forallt,qEgandTEM. 
Let Qg = gl(n, C) @ C[h, A-‘] be the loop algebra of semi-infinite formal Laurent 

series in k with coefficients in gl(n, C), e.g. an element X(k) E s2g can be expressed as a 
formal series of the form 

X(h) = 2 qh’ for allxi E gl(n, C), 
i=co 

the Lie bracket with Y(h) = Cj,, yjvihj is given by 

m+l 

[X(k.). Y(h)1 = C C [Xi, Yjlh”. 
k=-co i+j=k 

We define a Poisson bracket of two smooth functions gt and g2 on .Rg* by 

(gl> 821 = ((11, [vgl? Vg21)t 

where a! E Qg*, V is the usual gradient, i.e. 

(rl, Vgi(O) = $gi(C + V)lr=o forallC, v E R. 

Here we will be working with the extended loop algebra cg, the one-dimensional central 
extension of fig, defined by the two-cocycle 

w(X, Y) = s X’Y dx. 

We define extended loop group S2G to be 

O-R-fiG+QG-+l. 

The corresponding loop algebra fig = S2g @ R. The Lie bracket of the loop algebra S?g 
satisfies 

[(X(A), u), (Y(A), b)l = (IX. Yl, 1 rm’)): 
S’ 

where X E S2g and a E Ft. 
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We define a non-degenerate ad-invariant bilinear form on S2g: 

(X(h), Y(h)) = resA=otr(h-‘X(h)Y(h)) = tr(X(A)Y(A))n 

and this bilinear form can be extended to define the bilinear form on fig by 

((X, a), (Y, b)) = ab + 
s 

tr(XY). 

S’ 

There is a natural splitting in the loop algebra fig = fig+ $ fig-, where fig+ denotes 
the subalgebra of fig given by the polynomial in h, and fig- is the subalgebra of strictly 
negative series. 

Then via ad-invariant bilinear form ( , ) we identify 

(fig+)* - (fig-)’ and (fig-)* - (fig+)‘. 

Under the above identification, we can define the infinitesimal action of the coadjoint 
action of 6’G- on fig’ and this is given by 

(n+(ad* X>F + cn+X’, 0). 

The dual space fig’ stratifies into Poisson submanifolds corresponding to different values 
of the parameter; each of them is endowed with a Poisson bracket. Let us fix c = 1, so we 
confine us to a hyperplane in fig*. By abuse of notation we shall continue to call it fig*. 

Proposition 1. The Poisson bracket in the space of fig* for the two smooth functions has 
the form 

ifi? f2lV) = ([Vfl, Vf21, Y) + s dVf2 Of1 7’ 

where Y E f2g. 

Let Z(g*) denote the ring of infinitesimally Ad* invariant function on g* @ R. So VF E 
Z(g*) will be ad-invariant function if and only if 

((~9 O), [X, VW + aVF/ax) = 0 

for all X E g and p E g* where VF is thought of as an element of g - g**. In the absence 
of any central extension term Adast invariant function satisfies 

(/A [VF, Xl) = 0. 

Let ft and & be the ad-invariant function and when they are restricted to I* - k’ these 
satisfy [ft, f^2)[* = 0. 

Theorem 2. Let fig = fig’ @ fig- and M C fig+ a coadjoint orbit equipped with 
a natural weak orbit symplectic structure w. Let Hi : Bg --+ R be the set ad-invariant 
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functions in I (g*) restricted to (fig+)’ which is an involutive system on the coadjoint orbit. 
The Hamiltonian equations of motion on tig* generated by the Hamiltonian (ad-invariant 

function) have the form 

8L 
-= 
at 

g + [P, Ll, 

where P = n+[grad H]. 

So this defines a flat connection L dx + P dt on a cylinder S’ x [w associated with the 
above zero curvature equation. In order to apply the AKS scheme we have to know about 
ad-invariant function. However Adler and van Moerbeke or Reiman and Semenov-Tian- 
Shansky gave a nice formalism to construct these functions. We will skip these discussions 
here. 

Let us define the Hamiltonians by 

H(y) = itr K’y*, 

where y is the orbit (which would be L in the previous case). Let us assume our orbit to 
be y = h*A + hQ2 + Qt, where A is the constant diagonal matrix, and Q2 and Qt are 
the off-diagonal and diagonal matrices, respectively. Although we take a very special orbit, 
this can be generalized to higher orbits. 

Then the Hamiltonian equation would be 

@*A + ~QI + hQ2)r = [h*A + kQl + Q2. hA + QII + (AA + QI),. 

Remark. When we apply Fordy-Kulish method to the AKS scheme we obtain different 
Hamiltonian systems associated to different hermitian symmetric spaces. In this case Q I 
and Q2 will take special values which depend on the breaking of the Lie algebra (for details 
see [Ma]). 

We shall now investigate the higher flows of the AKS scheme generated by the traces of 
higher powers of A. 

3. AKS hierarchy and commuting flows 

Let i ((h-l)) be an element of the loop algebra, and ,jj )+ = IF<? ~33 ghk be its polynomial 

part and gl_ = xki_, $ ikk its pure Laurent part. We assume that 6[_ be the group 
corresponding to subalgebra i I _. 

Let y be the orbit defined as y := Q 1 +hQ2+k*A. Hence the gradient of the Hamiltonian 
would be VH = Q2 + hA. We will denote VH by ~2. 

Lemma 3. There exists S(x, h) E 6 I_ such that it satisJies 

& - Ql - kQ2 - X2A = S(& - k’A)S-‘. 
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Proo$ We shall follow the proof of Ablowitz et al. Here S is a Sato type operator introduced 
by them in this context. It is easy to see that the above expression reduces to 

ass-l = r - h2SAS_‘. 

Assume 

ass-1 = O” v, c 
n=O 

F 
and SAS-‘=A+F;. 

n=l 

Here V,, S,, E 2, substituting this expression to the equation we obtain 

S2 = Qt - Vo, S1 = Q2 and S, = -Vn_2, n > 2. 

Consider the differential equation 

a(SAS-‘) = [ass-‘, SAS-‘1 = [v, SAS-‘I, 

this produces a recursion relation among S,,‘s: 

W A)Sn+2 + (ad Q2)Sn+1 = (8 - ad Ql>Sn. 

Since the coefficients S, and V,, can be determined recursively, the existence of S(x, h) E 
GIL. 0 

Definition 4. 
(1) We define 

@ := SAS-’ = $2, 

where 40 = A and 41 = Q2. 
(2) & := i&k and yk = (hk-‘@)+ for all n 2 0, where y2 := Q2 + hA. 

Lemma 5. Coeficients q!+, E g, n > 1, are uniquely determined by the initial conditions 
&=Aand&=Qz. 

Prooj We know that # = SAS-’ and 8, - y = S(& - h2A)S-‘, hence we obtain 

[a - y, 41 = S[& - h2A, AIS-’ = 0. 

Thus we get a,4 = [v, $1. Now we consider the expansion 4 = C,“=o(&/Ln) and y = 
h2A + h Q2 + Q t . So using this expression we obtain the recursion relations 

(ax - ad QI>& + (ad .4Mn+2 - (ad Qzh+l = 0. 

Hence once we specify the initial conditions 40 = A and 41 = Q2 we can uniquely obtain 
all other & recursively. 0 
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Definition 6. An AKS hierachy is defined by the infinite sequence of flows with respect to 
higher times tk and the kth member of the family is given by 

[a,-~,&-nl=O> k>2, 

i.e. 

8kY - &Yk + [Y. Ykl = 0. 

This zero curvature equation arises as the compatibility condition for the following linear 
systems: 

Definition 7. The kth flow in the AKS hierarchy can be considered as a “dressing” of a 
“bare” solution by the intertwiner 

a., - )/ = S(a - h2A)S-‘, & - Yk = S(& - kk-‘A)+. 

Then by simple rearrangement and manipulation we obtain 

yk = &SS-’ + hk-‘SAS-’ = &SS-’ + kk-‘$. 

Since by definition we know that yk = (Xk-‘~)+ and &SS’ E ,$, we obtain 

&SS+ = -(;ik-‘4)). (*) 

L63IUna 8. The evolution equation for C#J is given by a& = [yk, $11. 

Proo$ We use the following equalities: 

8k - yk = S(& - hk-‘A)S-’ and I$ = SAS-’ 

Hence it is not hard to see 

[& - yk, @] = S[& - hk-‘A, A]S-’ = 0. 0 

Theorem 9. The higherflows of the AKS are commuting. 

Proqf: Let us rewrite Eq. (*) by 

i&S = -(P&S fork > 2. 

The compatibility condition gives us 

&(A.‘-I$)_ - aj(~k-l$)_ + [(ikP1@)_, (h”@)] = 0, (El) 

and this is valid only for k, 1 2 2. Now we shall use Lemma 8, we multiply hi-’ to that 
equation for kth time and kk-’ to that of Ith time and then subtracting these two, we obtain 
the following equation: 

&(A.“-‘@) - ak@-‘4) = [Yr, (hk-‘@)l - [Yk. @.‘-‘@)I. 
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When we project this equation to “negative” loops or g) _ we get 

Hence using (Et) and (E2) we obtain 

-[GPqv+, (~k-'$>lL + uhk-‘qb)+, @-‘qw + [(hk-*~>-, @'-'~)-I- 

= [(hkv#& (Pc#l)]_ = 0, 

where we have used yk := (hk-‘@)+. 0 

(E2) 

4. Reduced SDYM hierarchy and twistor correspondence 

In this section we shall establish a link between the SDYM equation (hierarchy) and the 
AKS scheme (hierarchy). We shall begin this part with some preliminary definitions. 

Let V be a trivial vector bundle over lR4 with fibres isomorphic as linear vector spaces 
to the Lie algebra g. We define that the connection and the curvature are g-valued one- 
and two-forms, respectively, and these are given by A := ~~=, A,(x) dx@ and F := 

C;,,=, F,,(x) dx@ A dx”, where x = (xp) are the usual coordinates of R4 and 

FLcv = a,& - &A, - [A,, A,]. 

Definition 10. 
(1) The SDYM equations are the system of first-order partial differential equations given 

by 

Fol = F23, Fo2 = F31, Fo3 = F12, 

where connections are defined upto gauge transformation. 
(2) In terms of complex coordinates on R4 the SDYM equations can be rewritten as 

F,, = F& = 0, Fyj + Fzi = 0, 

where we introduce y = x ’ + ix2, z = x0 - ix3, j and Z are the complex conjugates. 
(3) The SDYM equations can be realized as the compatibility condition for the following 

linear system: 

DI$ = AI+, D2$ = A2$, 

where 

D! = ay +haz, D2 = a, - ka,, 
Al = A, + LA,, A2 = Ai - AA,, 

and h E C P ’ is the spectral parameter, 
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These linear pairs of the SDYM were introduced by Belavin and Zakharov [BZ]. Under 
a suitable gauge transformation Ablowitz et al. have shown that the SDYM equations can 
be reduced to 

F,; = 0. Fyi; + FZz = 0. 

In this representation A, and A? are the diagonal matrices. 
The SDYM equations can be dimensionally reduced and when we reduce to 1 + I- 

dimensions, these equations depend only on the coordinates .v and z. Here we shall denote 
_v and z by x and t, respectively. We choose A: = A’, A, = -A2 and A, = UI, A, = lJ2 
such that A’s and U’s are diagonal and off-diagonal matrices, respectively. 

Definition 11. The 1 + l-dimensional reduction of the SDYM can be obtained from the 
compatibility condition of 

a,$ = (U’ + hA’)+, a,* = (cJ2 + AA’)+, 

i.e. these look like 

a,u’ - axu2 + [ul, u*] = 0, [A’, U’] = [A’. (/‘I. 

Theorem 12 [ACT]. 
(1) The reduced SDYM hierarchy satisjies the following evolution equation at k-th time: 

akU1 = axxk-l - [U! ~4, t2 = t, k 12. 

where x is defined by 

x=A2+ 

(2) These hierarchies can be realized as the compatibility condition offollowing linear 
system: 

ak+ = wktk k > 1, 

where tl = x, WI = U’ + LA’ and Wk = (Lk-‘~)+. 
(3) Higherflows commute: 

akw/ - alwk + [w/, wk] = 0. 

Next we shall show that our AKS equation is a special case of I+ l-dimensional reduced 
SDYM equation. 

Lemma 13. AKS system is 1 + 1 -reduction of the SDYM equation. 

Proo$ It is easy to see that when we replete A’ = LA, U’ = Ql + hQ2, A2 = A and 
U* = Q2 we obtain the AKS equation. Moreover, if we put these values into the constraint 
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