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Abstract

The Adler—Kostant-Symes (AKS) scheme gives a geometrical method of construction of different
integrable systems. In this paper we construct an AKS hierarchy, and we show that these commuting
flows are reductions of self-dual Yang-Mills hierarchy.
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1. Introduction

It is well known that a systematic procedure of obtaining the most finite-dimensional
completely integrable systems is the Adler, Kostant and Symes (AKS) theorem [AvM,Sy]
to apply some Lie algebra g equipped with an ad-invariant non-degenerate bilinear form.
We assume that g, as a vector space g = k + [, is presented as the linear sum of two
subalgebras. This bilinear form induces an isomorphism g ~ g*. Hence with the help of
bilinear form { , ) we can identify k* ~ [+ and I* ~ k* where

k*. ky=(*+ 1)=0.

So k1 acquires a Poisson structure from that of I*. The coadjoint action of L on k1 ~ I* is
given by

gop=mui(gpg™")

for g € L and p € k. Then the infinitesimal action is n(p) = m,1[n, plforn € .
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The symplectic manifold here is some coadjoint L-orbit M C k* ~ [*. We associate to
it a Hamiltonian equation of suitable ad-invariant function f : g —> R for all f|u. In our
case g is a loop algebra. We mention that many important equations can be derived from
this approach, e.g. Adler and van Moerbeke [AvM] obtained an Euler-Arnold equation and
geodesic flow on ellipsoid, Ratiu [Ra] obtained C. Neumann equation and so on. In fact
we have also obtained coupled KdV and non-linear Schrédinger equation by applying this
AKS theorem. Hence AKS proves to be a general systematic procedure of obtaining many
known and relatively unknown completely integrable Hamiltonian system.

In a recent paper Ablowitz et al. [ACT] have developed a hierarchy of self-dual Yang—
Mills (SDYM) equations by introducing an operator. This approach to the SDYM hierarchy
is based on the general concept of intertwining operators which was introduced by Schur.
The concept of intertwining operator has been applied by Mikio Sato in his theory of KP
system [SS]. These intertwiners transform “bare unperturbed” auxiliary linear systems into
“perturbed” linear systems which have been treated as a formal power series in A7l In
fact Ablowitz et al. have shown that these intertwiners are the non-local functionals of the
Yang-Mills potentials. As an application to two-dimensional systems, they have shown
that upon appropriate reduction and suitable choice of gauge group this hierarchy produces
all the well-known hierarchies of soliton equation in 1 + 1-dimensions. Hence they call it
universal integrable hierarchy.

Ward and Mason et al. [Wa,MS] have demonstrated that how the most well-known or not
so well-known integrable systems arise as the reductions of SDYM equation. Thus all such
integrable equations fall under the twistor framework. Certainly these give us a clue that
we can reformulate the theory of integrable systems in terms of symmetry reductions of the
SDYM equations. By reduction we mean: (a) one can reduce the number of independent
variables to fewer than four by factoring out by a subgroup of the Poincaré group; and (b)
one can reduce the number of dependent variables by imposing algebraic constraints on the
connections.

This article serves two purposes: firstly, this gives a picture of higher flows for AKS
hierarchy and we show that these are commuting flows, and secondly, since these flows are
the reductions of SDYM hierarchy, morally this article gives further support to the twistor
programme.

2. Adler-Kostant-Symes scheme

We separate out this section into two parts. In the first part we shall discuss the AKS
theorem of a group with a two-cocycle [CG,Gu,RS]. In the second part we shall discuss the
higher flows of AKS scheme, and we shall show that all the higher flows are commuting.

2.1. AKS theorem

A two-form o on M is called weak-symplectic form if  is closed and the induced map
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from T M to T*M is defined by
ur— oo, u),

if it is injective then (M, o) is called symplectic manifold. Let M C k+ ~ [* be the
coadjoint L orbit. Then the weak-symplectic form is the Kostant—Kirillov two-form on M
defined by

or(X.Y) = (T, [£.n])

forall§,negand T € M.

Let 2g = gl(n,C) ® C[x, 17 '] be the loop algebra of semi-infinite formal Laurent
series in A with coefficients in g/(n, C), e.g. an element X (1) € £2g can be expressed as a
formal series of the form

m
X()\) = Z xiki for allxi € gl(n, C),

i=00
the Lie bracket with ¥ (1) = 3-/___ v;A/ is given by
m+1
X, YWl= > > [n. oy~
k=—oc i+ j=k

We define a Poisson bracket of two smooth functions g; and g, on £2g* by

{gt, g2} = (&, [Vg1. Vgal),

where @ € 2g¢*, V is the usual gradient, i.e.
d
{n. Vgi(£)) = 8¢ +nli=o forallf,n€g.

Here we will be working with the extended loop algebra £2g. the one-dimensional central
extension of $2g, defined by the two-cocycle

w(X,Y) =/X’Y dx.
sl
We define extended loop group §2G to be
0—R-— 26— 26— 1.

The corresponding loop algebra ¢ = 2g @ R. The Lie bracket of the loop algebra Qg
satisfies

(X)), a), (Y(X), b)] = ([X, Y],/tr(XY’))
sl

where X € 2g anda € R.
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We define a non-degenerate ad-invariant bilinear form on £2g:
(X(1), Y(W) = resp= tr(A ' X (MY (V) = tr(X (WY (M)o

and this bilinear form can be extended to define the bilinear form on §2g by

((X,a), (Y,b)) =ab+ / tr(XY).
s!
There is a natural splitting in the loop algebra 2g = 2g* @ 2g~, where $2g* denotes
the subalgebra of £2g given by the polynomial in A, and £2g~ is the subalgebra of strictly

negative series.
Then via ad-invariant bilinear form ( , ) we identify

(g7 ~ (g7 and (2g7)" ~ (gD
Under the above identification, we can define the infinitesimal action of the coadjoint
action of 2G~ on 2g* and this is given by
(my(ad* X)u+cni X', 0).

The dual space 2g* stratifies into Poisson submanifolds corresponding to different values
of the parameter; each of them is endowed with a Poisson bracket. Let us fix ¢ = 1, so we
confine us to a hyperplane in §2g*. By abuse of notation we shall continue to call it 2g*.

Proposition 1. The Poisson bracket in the space of §2g* for the two smooth functions has
the form
dv f»

dx ’

U1 f2)(¥) = (VA VL Y) + / VA
S'
where Y € (2g.

Let I(g*) denote the ring of infinitesimally Ad* invariant function on g* ® R. So VF €
I(g*) will be ad-invariant function if and only if

((u,0),[X, VF]+3dVF/ax) =0

forall X € g and u € g* where VF is thought of as an element of g ~ g**. In the absence
of any central extension term Ad® invariant function satisfies

(1, [VF, X]) =0.

Let fl and fz be the ad-invariant function and when they are restricted to /* ~ k-1 these
satisfy { f1, o} = 0.

Theorem 2. Let 2g = 2g7 & 28 and M C $2gT a coadjoint orbit equipped with
a natural weak orbit symplectic structure w. Let H; : 2g —> R be the set ad-invariant
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functions in 1(g*) restricted to ($2g )L which is an involutive system on the coadjoint orbit.
The Hamiltonian equations of motion on §2g* generated by the Hamiltonian (ad-invariant
function) have the form

oL P

— = —+|[P. L],
dt ox [ ]

where P = m [grad H].

So this defines a flat connection L dx + P dt on a cylinder §' x R associated with the
above zero curvature equation. In order to apply the AKS scheme we have to know about
ad-invariant function. However Adler and van Moerbeke or Reiman and Semenov-Tian-
Shansky gave a nice formalism to construct these functions. We will skip these discussions
here.

Let us define the Hamiltonians by

H(y)=3tra~ly?,

where y is the orbit (which would be L in the previous case). Let us assume our orbit to
be y = AA+ AQ> + Qy, where A is the constant diagonal matrix, and (7 and Q| are
the off-diagonal and diagonal matrices, respectively. Although we take a very special orbit,
this can be generalized to higher orbits.

Then the Hamiltonian equation would be

(AA+AQ1 +102) = [M2A+101 4+ Q2. AA + Q11+ (A + O)),.

Remark. When we apply Fordy—Kulish method to the AKS scheme we obtain different
Hamiltonian systems associated to different hermitian symmetric spaces. In this case @
and Q3 will take special values which depend on the breaking of the Lie algebra (for details
see [Ma]).

We shall now investigate the higher flows of the AKS scheme generated by the traces of
higher powers of A.

3. AKS hierarchy and commuting flows

Let g((.~")) be an element of the loop algebra, and g|; = Z(ioko @ 22X be its polynomial
partand g|- = Y ;.| D g1k its pure Laurent part. We assume that G|_ be the group
corresponding to subalgebra g|_.

Let y be the orbitdefinedasy := Q1+AQ02 +A2 A. Hence the gradient of the Hamiltonian
would be VH = Q> + AA. We will denote VH by y».

Lemma 3. There exists S(x, L) € GI_ such that it satisfies

3 — Q1 —A02 — A2A = S8, — A2A)S.
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Proof. We shall follow the proof of Ablowitz et al. Here § is a Sato type operator introduced
by them in this context. It is easy to see that the above expression reduces to

38S~ = —A%sAs~".

Assume

| %]

n
et

>

» 00 v, . 00
ass~! = Z o and SAST =4+ Z
n=0 n=1

Here V,, S, € g, substituting this expression to the equation we obtain
S=01—-W, Si=Q ad S$,=-V,2, n>2
Consider the differential equation
ASAS )y =1as57!, sAS 1=y, sAs7!),
this produces a recursion relation among S,’s:
(ad A)Sp42 + (ad Q2)Sn+1 = (0 — ad Q1) Sp.

Since the coefficients S, and V, can be determined recursively, the existence of S(x, 1) €
Gl-. a

Definition 4.
(1) We define

o 9,
¢:=SAS"'=>"=2,
= X

where ¢p9 = A and ¢ = Q».
(2) 3 := 3y and y = (W~ 1g), forall n > 0, where ¥ 1= 0 + AA.

Lemma 5. Coefficients ¢, € g, n > 1, are uniquely determined by the initial conditions

¢o = A and ¢ = Q3.
Proof. We know that ¢ = SAS™! and 8, — y = S(3; — 124)S~!, hence we obtain
[0 —y,¢] = S[3: — %A, AlS™! =0.

Thus we get 0,¢ = [y, ¢]. Now we consider the expansion ¢ = > 1> (¢, /A") and y =
AZA+ 102+ 01. S0 using this expression we obtain the recursion relations

(0x — ad Q1)¢n + (ad A)pny2 — (ad Q2)Pn+1 = 0.

Hence once we specify the initial conditions ¢9 = A and ¢, = Q2 we can uniquely obtain
all other ¢, recursively. O
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Definition 6. An AKS hierachy is defined by the infinite sequence of flows with respect to
higher times #; and the kth member of the family is given by

[ax_y’ak_-yk]:()v kzzs
i.e.
Y — ey +ly. el =0.

This zero curvature equation arises as the compatibility condition for the following linear
systems:

é=vE and &&= wé.

Definition 7. The kth flow in the AKS hierarchy can be considered as a “dressing” of a
“bare” solution by the intertwiner

h—y =S80 -rA4)S", W — vk = S —AFtays .

Then by simple rearrangement and manipulation we obtain
Ve = RSS2 TSAST! = 9SS 4 Ak g,
Since by definition we know that y; = (A*~!¢), and 3;SS~! € g|_, we obtain

RSS! =gy (%)
Lemma 8. The evolution equation for ¢ is given by ox = [yx. ¢].

Proof. We use the following equalities:
k- =S —r*14)S" and ¢ =S545"".
Hence it is not hard to see

[0 — yi. @] = S[a — AF"1A, AlS™T = 0. -
Theorem 9. The higher flows of the AKS are commuting.

Proof. Let us rewrite Eq. (x) by
S =— )-S5 fork > 2.
The compatibility condition gives us
KAy — 8 )+ 1 ), el =0, (E1)

and this is valid only for k,/ > 2. Now we shall use Lemma 8, we multiply A/~ to that
equation for kth time and A*~! to that of /th time and then subtracting these two, we obtain
the following equation:

a1y — (L) = [y, KT )] — [n, ).
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When we project this equation to “negative” loops or g|_ we get
F* o) — a1 = [y, KT NIn, )] (E2)
Hence using (E1) and (Ez) we obtain
—[A ) GO+ IOK o, T ] + I ) ()
= [, e =0,

where we have used y; 1= (A1), 0O

4. Reduced SDYM hierarchy and twistor correspondence

In this section we shall establish a link between the SDYM equation (hierarchy) and the
AKS scheme (hierarchy). We shall begin this part with some preliminary definitions.

Let V be a trivial vector bundle over R* with fibres isomorphic as linear vector spaces
to the Lie algebra g. We define that the connection and the curvature are g-valued one-

and two-forms, respectively, and these are given by A = Zi:o A,(x) dx* and F =

3

=0 Fuv(x) dx* A dx", where x = (x*) are the usual coordinates of R* and

Fup = 0,A, — 3,4, — [Au, Ayl

Definition 10.
(1) The SDYM equations are the system of first-order partial differential equations given
by

For = 23, Foo=F31, Fo3 = Fio,

where connections are defined upto gauge transformation.
(2) In terms of complex coordinates on R* the SDYM equations can be rewritten as

= Fy;: =0, Fy; + F;z =0,

where we introduce y = x! +ix?, z = x? — ix3, 7 and 7 are the complex conjugates.

(3) The SDYM equations can be realized as the compatibility condition for the following
linear system:

Dy = A1y, Doy = Az,
where

Dy = 9, + A0z, D, = 3; — A9y,
Al = Ay + LAz, Ay = A; ‘—)\A.‘-,,

and A € CP! is the spectral parameter.
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These linear pairs of the SDYM were introduced by Belavin and Zakharov [BZ]. Under
a suitable gauge transformation Ablowitz et al. have shown that the SDYM equations can
be reduced to

E\‘Z = 0-, Fy.\'y —+— FZE — O

In this representation A5 and A; are the diagonal matrices.

The SDYM equations can be dimensionally reduced and when we reduce to | + 1-
dimensions, these equations depend only on the coordinates y and z. Here we shall denote
v and z by x and 1, respectively. We choose A; = A', Ay = —A? and Ay =U, A = U,
such that A's and U's are diagonal and off-diagonal matrices, respectively.

Definition 11. The 1 + 1-dimensional reduction of the SDYM can be obtained from the
compatibility condition of

=W +2Aahy, qy = (U2 + 1AD)y,
i.e. these look like

2

U —axU? + U, U =0, (Al u? = 14%U"Y.

Theorem 12 [ACT].
(1) The reduced SDYM hierarchy satisfies the following evolution equation at k-th time:

WU =0xxh1 — U xut), 2=t k22,
where x is defined by
o0
A2 Xk
k=1
(2) These hierarchies can be realized as the compatibility condition of following linear
system:
oy = Wi, k=1,

wheret) = x, Wy = U! + rAY and W, = (kk_lx)+.
(3) Higher flows commute:

KW — Wi + [W;, W1 =0.

Next we shall show that our AKS equation is a special case of 1 4+ 1-dimensional reduced
SDYM equation.

Lemma 13. AKS system is 1 + 1-reduction of the SDYM equation.

Proof. It is easy to see that when we replece A = LA, U! = Q) + 102, A = A and
U? = Qz we obtain the AKS equation. Moreover, if we put these values into the constraint
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equation [A!, U?] = [A%, U], we obtain [A, Q]. Since A is a constant diagonal matrix
and Q) is also a diagonal matrix so they commute, i.e. [A, Q] = 0. 0O

By a similar calculation the following result can be proved easily:
Theorem 14. The AKS hierarchy is the reduction of the SDYM hierarchy.

Since the AKS equations are reductions of the SDYM equations on R*, the standard
twistor correspondence for the full SDYM equation can be reduced to give a correspondence
for solutions of the AKS scheme.

Let us recall that the Bogomolnyi equation is obtained when single non-null translational
symmetry is imposed on the SDYM equation. The solutions of the Bogomolnyi equation
correspond to bundles invariant under the corresponding symmetry on C P3 (twistor space).
Since there is no fixed point on C P, here bundles are the pull back bundles on the quotient
of CP3 by that symmetry. This quotient is called minitwistor space and it is denoted by
O(2), itis a holomorphic line bundle of Chern class 2 over C P! . This idea can be generalized
to any member of the Bogomolnyi hierarchy.

Theorem 15 [MS]. There exist a 1:1 correspondence between solution of the n-th Bogo-
molnyi hierarchy on a domain U C C"*! and the holomorphic vector bundle on the open
region in O(n) swept out by the sections of O(n) corresponding to the points of U. This
bundle is trivial when it is restricted to the sections of O(n) corresponding to points of U.

In the case of the AKS scheme we impose one more additional symmetry. It is not
possible to factor out this extra symmetry. Hence the solutions of the AKS equation have
one to one correspondence with the holomorphic vector bundles satisfying certain symmetry
and reality condition on O(2).

The solutions of the first (n — 1) equations of the hierarchy correspond to holomorphic
vector bundles on O(n) satisfying the appropriate symmetry and reality condition.

5. Summary

In this paper we have given a hierarchy of the AKS scheme and shown that these are
the reductions of the SDYM hierarchy proposed by Ablowitz et al. We know that the AKS
scheme is a general method to derive integrable systems, hence this paper has strengthened
the aim to reformulate the theory of integrable systems in terms of symmetry reductions of
the SDYM equation and their twistor correspondences.
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